Novel zirconium complexes derived from C_{2}-symmetric diamide ligands; the X-ray crystal structure of $\left[\mathrm{Zr}\left(\eta^{1}-\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{Ph}\right)\left\{\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{2}-2,2^{\prime}-\left(\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Ph}-4\right)_{2}-6,6^{\prime}-\mathrm{Me}_{2}\right\}\right]$

F. Geoffrey N. Cloke ${ }^{*}$, Tilmann J. Geldbach, Peter B. Hitchcock, Jason B. Love
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BNI 9QJ, UK

Received 22 August 1995

Abstract

The novel alkene polymerisation cocatalysts $\left[\mathrm{Zr}_{\left(\mathrm{CH}_{2} \mathrm{Ph}\right.}^{2}\right.$ (ArDABP)] containing the biphenyl-bridged ligands $2,2^{\prime}$-di-(N -benzyl)amino-6,6'-dimethylbiphenyl (ArDABP, $\mathrm{Ar}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\prime} \mathrm{Bu}-4$ or $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Ph}$) display averaged C_{2}-symmetry in solution and an η^{2}-benzyl coordination mode in the solid state.

Keywords: Zirconium; Diamide ligands; Olefin polymerization; Catalyses; Crystal structure

Non-metallocene complexes of Group IV metals have recently attracted considerable attention as possible alternatives for olefin polymerisation catalysts, employing N_{4}-macrocycles [1,2], porphyrins [3], tripodal amides [4,5], mixed cyclopentadienyl-amides [6], or -benzamidines [7] and Schiff bases [8] as spectator ligands. Such interest has, in part, stemmed from the principal that the coordination sphere of such catalysts might be more easily tuned by using non-cyclopentadienyl based ligands, leading to systems capable of stereoregular olefin polymerisation in a similar manner to metallocene catalysts that incorporate C_{2}-symmetric, constrained indenyl [9], or biphenyl-bridged bis(cyclopentadienyl) ligands [10]. In view of the utilisation of hard, chelating ligands as chiral auxiliaries in enantioselective organic synthesis by transition metal complexes [11], it seemed surprising that a similar approach has only recently been employed in order to exert stereochemical control on olefin polymerisation catalysts, using sterically hindered, chelating phenoxides as ancillary ligands [12]. In this communication, we report the synthesis and preliminary results on

[^0]the catalytic activity of novel zirconium bis(benzyl) complexes that incorporate C_{2}-symmetric diamide ligands derived from $2,2^{\prime}$-diamino-6,6'-dimethylbiphenyl.

The benzyl-substituted diamine ligands ($\mathrm{ArDABPH}_{2}$) were synthesised in high yield via reduction of the imines resulting from the condensation of the parent diamine with aromatic aldehydes, as outlined in Scheme 1. Reaction of the known chelating amine $2,2^{\prime}$-diamino-6,6'-dimethylbipheny [13] with either 4 -tert-butylbenzaldehyde or 4-phenylbenzaldehyde in EtOH at $70^{\circ} \mathrm{C}$ resulted in the formation of the diimines 1 or 2 respectively, which upon treatment with LiAlH_{4} in $\mathrm{Et}_{2} \mathrm{O}$ were reduced to the benzyl substituted diamines 3 or 4 . The analytical and spectroscopic data for these compounds support their proposed formulation ${ }^{1}$. Amines 3 and 4 are sufficiently acidic to undergo protonolysis reactions with $\left[\mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right]$, resulting in the elimination of toluene and the formation of the air and moisture sensitive dialkyldiamide complexes $\left[\mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}(\mathrm{ArDABP})\right]$ ($\mathrm{Ar}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {t }} \mathrm{Bu}-4$ [5]; $\mathrm{Ar}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Ph}-4$ [6] respectively) (see Scheme 1) ${ }^{1.2}$.

The crystal structure of 6 has been determined ${ }^{3}$ and the molecular structure is shown in Fig. 1 together with selected bond distances and angles. The ligand arrangement around the $\mathrm{Zr}(\mathrm{IV})$ centre is best described as

Scheme 1. Reagents and conditions: (i) $(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}-4, \mathrm{EtOH}$, $67^{\circ} \mathrm{C}, 1 \mathrm{~h}, 1\left(\mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}, 85 \%\right), 2(\mathrm{R}=\mathrm{Ph}, 89 \%)$; (ii) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, $25^{\circ} \mathrm{C}, 3(83 \%), 4(92 \%)$; (iii) $\left[\mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right], 5$ petrol ($40 / 60$), 96 h , (100% by NMR spectroscopy), 6 toluene, 48 h , (100% by NMR spectroscopy).
distorted tetrahedral, although it is evident that one of the benzyl ligands is coordinated in an η^{2}-fashion, characterised by an acute $\mathrm{Zr}-\mathrm{CH}_{2}-\mathrm{C}_{\text {ipso }}$ angle $\left[83.4(2)^{\circ}\right]$
and a short $\mathrm{Zr}-\mathrm{C}_{\text {ipso }}$ contact [2.570(4) \AA]. Similar interactions have been observed in structurally characterised benzyl metallocene cations [14], trisbenzyl zwitterions [15], and also neutral benzylalkoxide zirconium complexes [16], and are associated with the presence of a highly electrophilic metal centre. A short $\mathrm{Zr}-\mathrm{C} 28$ contact $[2.678(4) \AA$ and acute $\mathrm{Zr}-\mathrm{N} 1-\mathrm{C} 28$ angle $\left[100.3(2)^{\circ}\right]\left(c . f .>3 \AA\right.$ and $124.6(2)^{\circ}$ respectively for those involving $\mathrm{Zr}, \mathrm{N} 2$ and C 42) are also observed, which might be described as an η^{2}-amide interaction involving one phenyl ring of the biphenyl backbone.

In solution ${ }^{1}$, both dibenzyl complexes 5 and $\mathbf{6}$ show averaged C_{2}-symmetry at temperatures between 320 and 180 K , with AB doublets being observed for the diastereotopic $\mathrm{N}-\mathrm{CH}_{2}$ and $\mathrm{Zr}-\mathrm{CH}_{2}$ protons. No evidence for η^{2}-benzyl coordination was observed by NMR spectroscopy at low temperature. The magnitude of the J_{CH} coupling constants for the benzyl CH_{2} carbons of ca. 130 Hz are not indicative of any agostic $\mathrm{Zr}-\mathrm{H}-\mathrm{C}$ interactions.

We have made a preliminary study of the catalytic properties of $\mathbf{5}$ and $\mathbf{6}$. For example, a solution of 5 (0.02 mmol) in toluene (200 ml) in the presence of a large excess of methylaluminoxane polymerises ethene ($\mathrm{Al} / \mathrm{Zr}=3130,10$ bar, yield 3.5 g , activity $1.3 \times 10^{4} \mathrm{~g}$

Fig. 1. Molecular structure of $\left[\mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}(\mathrm{ArDABP})\right] 6\left(\mathrm{Ar}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Ph}-4\right)$. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Zr}-\mathrm{N} 12.031(3), \mathrm{Zr}-\mathrm{N} 22.075(3), \mathrm{Zr}-\mathrm{C} 82.289(4), \mathrm{Zr}-\mathrm{C} 12.296(4), \mathrm{Zr}-\mathrm{C} 22.570(4), \mathrm{Zr}-\mathrm{C} 282.678(4), \mathrm{N} 1-\mathrm{Zr}-\mathrm{N} 2$ $109.36(13), \mathrm{N} 2-\mathrm{Zr}-\mathrm{C} 8101.76(14), \mathrm{N} 2-\mathrm{Zr}-\mathrm{C} 1110.31(14), \mathrm{N} 1-\mathrm{Zr}-\mathrm{C} 8109.1(2), \mathrm{C} 1-\mathrm{Zr}-\mathrm{C} 8121.1(2), \mathrm{C} 2-\mathrm{Cl}-\mathrm{Zr} 83.4(2), \mathrm{C} 9-\mathrm{C} 8-\mathrm{Zr} 106.3(3)$, $\mathrm{Zr}-\mathrm{N} 1-\mathrm{C} 28$ 100.3(2), $\mathrm{Zr}-\mathrm{N} 2-\mathrm{C} 42124.6(2)$.
'Satisfactory analyses have been obtained for all the new compounds described. Selected spectroscopic data: NMR spectra recorded at $360 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or at $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and given as δ relative to SiMe_{4} with coupling constants in $\mathrm{Hz} . \mathrm{C}_{\mathrm{q}}=$ quaternary C .

1: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right): 8.20(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.49\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 8.3\right.$, $\left.{ }^{\mathrm{t}} \mathrm{BuPh}\right), 7.37\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 8.3,{ }^{\mathrm{t}} \mathrm{BuPh}\right), 7.22(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}$, $\left.J_{\mathrm{HH}} 7.5\right), 6.80\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}} 7.7\right.$, backbone), $2.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32$ ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$).
2. ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right): 8.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.51(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 7.37(\mathrm{t}$, $\left.4 \mathrm{H}, J_{\mathrm{HH}} 7.4\right), 7.30\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}} 7.2\right), 7.16(\mathrm{~m}, 2 \mathrm{H}), 7.05\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}\right.$ $7.6), 6.78\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}} 7.6\right), 2.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right): 7.33\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}} 7.2,{ }^{\mathrm{t}} \mathrm{BuPh}\right), 7.20\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}\right.$ $\left.7.2,{ }^{\mathrm{t}} \mathrm{BuPh}\right), 7.13(\mathrm{~m}, 2 \mathrm{H}), 6.70\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}} 7.4\right), 6.55\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}\right.$ 7.8 , backbone), $4.30\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 7.0, \mathrm{~N}-\mathrm{CH}_{2}\right), 4.04\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}}\right.$ 7.0, NH), $1.98\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~s}, 18 \mathrm{H},{ }^{1} \mathrm{Bu}\right)$.

4: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right): 7.55(\mathrm{~m}, 8 \mathrm{H}), 7.43(\mathrm{~m}, 4 \mathrm{H}), 7.36\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{HH}}\right.$ $7.2), 7.17\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}} 7.7\right), 6.59\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}} 8.2\right), 4.40\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}\right.$ $\left.6.0, \mathrm{~N}-\mathrm{CH}_{2}\right), 4.15\left(\mathrm{t}, 2 \mathrm{H}, J_{\mathrm{HH}} 6.0, \mathrm{NH}\right), 2.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

5: ${ }^{1} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.17(\mathrm{~m}, 10 \mathrm{H}), 7.00\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 8.0\right), 6.90(\mathrm{~m}$, $4 \mathrm{H}), 6.76\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}} 7.3\right), 6.60\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 7.7, \mathrm{Ph}\right),[4.40,2 \mathrm{H}$ and $4.27,2 \mathrm{H}, \mathrm{AB}$ doublets, $\left.J_{\mathrm{HH}} 14.1\right],[1.92,2 \mathrm{H}$ and $1.50,2 \mathrm{H}, \mathrm{AB}$ doublets, $\left.J_{\mathrm{HH}} 9.4\right), 1.50\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$: $149.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 145.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 142.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 139.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 137.5(\mathrm{~s}$, $\left.\mathrm{C}_{\mathrm{q}}\right), 132.6^{(}\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 131.0(\mathrm{~s}, \mathrm{CH}), 129.2(\mathrm{~s}, \mathrm{CH}), 129.1(\mathrm{~s}, \mathrm{CH})$, $127.0(\mathrm{~s}, \mathrm{CH}), 125.3(\mathrm{~s}, \mathrm{CH}), 124.3(\mathrm{~s}, \mathrm{CH}), 123.2(\mathrm{~s}, \mathrm{CH}), 118.3(\mathrm{~s}$, $\mathrm{CH}), 64.93\left(\mathrm{~s}, \mathrm{Zr}-\mathrm{CH}_{2}\right), 55.29\left(\mathrm{~s}, \mathrm{~N}-\mathrm{CH}_{2}\right), 34.40\left(\mathrm{~s}, C \mathrm{Me}_{3}\right)$, $31.44\left(\mathrm{~s}, \mathrm{C}\left\{\mathrm{CH}_{3}\right\}_{3}\right), 20.67\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}: 64.93\left(\mathrm{t}, J_{\mathrm{CH}} 132\right), 55.29$ ($\mathrm{t}, J_{\mathrm{CH}_{1}} 134$).
${ }_{6:}{ }^{\mathrm{CH}_{1}} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.45\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 7.3\right), 7.34\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 8.0\right)$, $7.3-7.1(\mathrm{~m}, 12 \mathrm{H}), 7.03\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 8.0\right), 6.87(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{~d}, 2 \mathrm{H}$, $\left.J_{\mathrm{HH}} 7.2\right), 6.62\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}} 7.4\right),[4.43,2 \mathrm{H}$ and $4.31,2 \mathrm{H}, \mathrm{AB}$ doublets, $J_{\mathrm{HH}} 14.5$], [2.03, 2 H and $1.54,2 \mathrm{H}, \mathrm{AB}$ doublets, $J_{\mathrm{HH}} 9.4$], $1.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}\right): 144.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 141.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$, $141.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 140.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 139.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 132.6(\mathrm{~s}$, C_{q}) $, 130.9(\mathrm{~s}, \mathrm{CH}), 129.4(\mathrm{~s}, \mathrm{CH}), 129.1(\mathrm{~s}, \mathrm{CH}), 128.8(\mathrm{~s}, \mathrm{CH})$, $127.2(\mathrm{~s}, \mathrm{CH}), 127.1(\mathrm{~s}, \mathrm{CH}), 127.0(\mathrm{~s}, \mathrm{CH}), 126.9(\mathrm{~s}, \mathrm{CH}), 124.4(\mathrm{~s}$, $\mathrm{CH}), 123.2(\mathrm{~s}, \mathrm{CH}), 118.4(\mathrm{~s}, \mathrm{CH}), 64.72\left(\mathrm{~s}, \mathrm{Zr}-\mathrm{CH}_{2}\right), 54.88(\mathrm{~s}$, $\left.\mathrm{N}-\mathrm{C} \mathrm{H}_{2}\right) .20 .53\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}: 64.72\left(\mathrm{t}, J_{\mathrm{CH}} 132\right), 54.88\left(\mathrm{t}, J_{\mathrm{CH}}\right.$ 135).
${ }^{2}$ A typical preparation was as follows: a mixture of diamine 3 (3.0 $\mathrm{g}, 0.0059 \mathrm{~mol})$ and $\left[\mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right](2.7 \mathrm{~g}, 0.0059 \mathrm{~mol})$ in pentane ($400 \mathrm{~cm}^{3}$) was stirred in the dark at room temperature under argon for 96 h . The solution was then filtered via cannula, and concentration of the filtrate in vacuo and slow cooling to $-50^{\circ} \mathrm{C}$ afforded bright yellow crystals of 5 (yield: $2.64 \mathrm{~g}, 58 \%$).
${ }^{3}$ Crystal data for 6: $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{Zr}, M=816.2$, triclinic, space group P $\overline{1}$ (No. 2) , $a=10.860(2), b=13.037(6), c=14.677(3) \AA$, $\alpha=86.96(3), \beta=89.60(2), \gamma=84.59(3)^{\circ}, V=2065.8(11) \AA^{3}, Z=$ $2, F(000)=852, D_{\mathrm{c}}=1.31 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.31 \mathrm{~mm}^{-1}$.

Data were collected on an Enraf-Nonius CAD4 diffractometer using a crystal of size $0.40 \times 0.20 \times 0.20 \mathrm{~mm}$ mounted in mineral oil at 173 (2) K . A total of 7260 unique reflections were measured for $4<2 \vartheta<50^{\circ}, 5404$ reflections with $\left|F^{2}\right|>2 \sigma\left(F^{2}\right)$ being used in the refinement where $\sigma\left(F^{2}\right)=\left[\sigma^{2}(I)+(0.041 I)^{2}\right\}^{05} / L_{\mathrm{p}}$. A correction (maximum 1.00, minimum 0.94) was applied for absorption. The structure was solved using shel xs-86 [17], with all non-H atoms refined anisotropically by full matrix least squares using SHELXL-93 [18]. H atoms were included in the riding mode with $U_{150}(\mathrm{H})=1.2$ $U_{\text {eq }}(\mathrm{C})$. Methyl groups were fixed at idealised geometries but with the torsion angle defining the H atom positions refined and $U_{\text {1so }}(\mathrm{H})=1.5$ $U_{\text {eq }}(\mathrm{C})$. With a weighting scheme of $\omega=\sigma^{2}(F)$, the final residuals were $R=0.053, R^{\prime}=0.109$ with $S=0.912$.

Tables of hydrogen atom coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.
$\mathrm{mol}^{-1} \mathrm{~h}^{-1} \mathrm{bar}^{-1}$) and propene ($\mathrm{Al} / \mathrm{Zr}=8370,5 \mathrm{bar}$, yield 9.1 g , activity $7 \times 10^{4} \mathrm{~g} \mathrm{~mol}{ }^{-1} \mathrm{~h}^{-1} \mathrm{bar}^{-1}$, $M_{\mathrm{w}} / M_{\mathrm{n}}=2.55, M_{\mathrm{w}}=5000$, atactic). Similar activities for ethene polymerisation are observed when employing [ZrX_{2} (binaphtholate)] cocatalysts [12]. Studies on the effect of variation of the nitrogen substituents on the tacticity of resultant polyolefins are currently in progress.

Acknowledgements

We thank the E.P.S.R.C. (I.P.S.I.) for financial support (to J.B.L.).

References

[1] R. Uhrhammer, D.G. Black, T.G. Gardner, J.D. Olsen and R.F. Jordan, J. Am. Chem. Soc., 115 (1993) 8493.
[2] L. Giannini, E. Solari, C. Floriani, A. Chiesi-Villa and C. Rizzoli, Angew. Chem. Int. Ed. Engl., 33 (1993) 2204; C. Floriani, S. Ciurli, A. Chiesi-Villa and C. Guastini, Angew. Chem. Int. Ed. Engl., 26, (1987) 70.
[3] H. Brand, J.A. Capriotti and J. Arnold, Organometallics, 13 (1994) 4469.
[4] M. Kol, R.R. Schrock, R. Kempe and W.M. Davies, J. Am. Chem. Soc., 116 (1994) 4382 and references cited therein.
[5] S. Friedrich, L.H. Gade, A.J. Edwards and M. McPartlin, Chem. Ber., 126 (1993) 1797.
[6] A.K. Hughes, A. Meetsma and J.H. Teuben, Organometallics, 12 (1993) 1936.
[7] R. Gomez, M.L.H. Green and J.L. Haggit, J. Chem. Soc., Chem. Commun., (1994) 2607; A.N. Chernega, R. Gomez and M.L.H. Green, J. Chem. Soc., Chem. Commun., (1993) 1415.
[8] E.B. Tjaden, D.C. Swenson, R.F. Jordan and J.L. Peterson, Organometallics, 14 (1995) 371.
[9] J. Ewan, J. Am. Chem. Soc., 106 (1984) 6355; W. Kaminsky, K. Kulper, H.H. Brintzinger and F. Wild, Angew. Chem., Int. Ed. Engl., 24 (1985) 507; H. Schnutenhaus and H.H. Brintzinger, Angew. Chem., Int. Ed. Engl. I8 (1989) 777.
[10] M.E. Huttenloch, J. Diebold, U. Rief, H.H. Brintzinger, A.M. Gilbert and T.J. Katz, Organometallics, $/ 1$ (1993) 3600.
[11] See, for example, S. Kobayashi and H. Ishitani, J. Am. Chem. Soc., 116 (1994) 4083; K. Chibale, N. Greeves. L. Lyford and J.E. Pease, Tetrahedron: Asymm., 4 (1993) 2407; M. Terada, K. Mikami and T. Nakai, J. Chem. Soc., Chem. Commun., (1990) 1623.
[12] A. van der Linden, C.J. Schaverien, N. Meijboom, C. Ganter and A.G. Orpen, J. Am. Chem. Soc., 117 (1995) 3008.
[13] T.L. Marxen, B.J. Johnson, P.V. Nilsson and L.H. Pignolct, Inorg. Chem., 23 (1984) 4663 and references cited therein.
[14] D.J. Crowther, S.M. Borkowsky, D. Swenson. T.Y. Meyer and R.F. Jordan, Organometallics, 12 (1993) 2897; R.F. Jordan, R.E. LaPointe. N. Baenziger and G.D. Hinch, Organometallics, 9 (1990) 1539; R.F. Jordan, R.E. LaPointe, C.S. Bajgur, S.C. Echols and R. Willett, J. Am. Chem. Soc., 109 (1987) 4111.
[15] C. Pellacchia, A. Grassi and A. Immirzi, J. Am. Chem. Soc., 115 (1993) 1160.
[16] S.L. Latesky, A.K. McMullen, G.P. Niccolai, I.P. Rothwell and J.C. Huffman, Organometallics, 4 (1985) 902.
[17] G.M. Sheldrick, shel.xs 86, University of Gottingen, 1986.
[18] G.M. Sheldrick, shelxL 93, University of Gottingen, 1993.

[^0]: * Corresponding author.

